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edge effect is possible. Let us note that 

is always nondegenerate. 
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the edge effect in the case of isotropic shells 
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Fig. 1 I 

Another singularity inherent in orthotropic shells of nonnegative Gaussian curvature, 

appears at the edge with lesser curvature (& = 0). The edge effect is not degenerate 

for X > (Ea I &‘,)“*. If Ea I El < 1, then x are found such that the edge effect will be 
nondegen~ate. Therefore, for Ei I E, > 1 there exist values of x for which the edge 

effect will be nondegenerate along any of the principal directions, 
In this sense, the range of application of the asymptotic method to orthotropic shells 

is broader than for isotropic shells of corresponding geometry. 
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The dynamic stability and resonance modes for parametric vibrations of a visco- 
elastic bar subjected to a harmonic force are investigated by the method of ave- 
raging [ 1 - 31. The connection between the stress and strain is given as the sum 
of multiple integrals [4-63, 
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1. Let us consider the problem of transverse vibrations of a rectilinear viscoelastic 
rod loaded by a force f ( 5, t) distributed uniformly over the length of the bar, and com- 
pressed by a periodic longitudinal force P (t) = PO i- P cos et. The connection between 

the stress uX (t) and the strain a, (if is expressed by the following nonlinear law 
t 
. 

a,(t) -= E e, - 

1 i 

f?~ (t -z) ex (t) dt 

0 1 

- (1.1) 
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Rr(t- Zl, t --a, t- ~3)s~~ (~1) EX (r2)e, (zs)d~&pd~r 
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Here E is the instantaneous elastic modulus, h > 0 is a nonlinearity factor, and 
RI(~), R&, f, t) are relaxation kernels, 

We assume the validity of the law of plane sections and consider a section of the bar 

to be constant along its length. Then taking account of the appropriate equation for an 

elastic bar fl, 81, and using the results of fs], we obtain the following integro-differen- 
tial equation to describe the transverse vibrations of the viscoelastic bar (the prime de- 
notes differentiation with respect to x, and the dot with respect to t): 

EIUIV + P (t) U” + mu” = EI 
s 

RI (t - ~1) tr” (x, z) dz + 0.2) 
0 

t t t 
a *. 

hll 
~~~ 

% (t - Tl, t --%a, 1 -~3)~~IV(~,~1) U" (2, tz) U"(Z,%) _t 

000 

h"'(s, t1)u" (5, za) u” (2, ra) + 2u” (z, t1)u"(x, r2)zP (cc, zs) + 

2u"(z, n)um(I,z2)um(2,z3)f uv (x, Zl)P (x, z2)Un(Z, zs)+ 

U" (5, ~1) u" (2, ~2) ."(z, zs)] dtldradzs + f (r, t), II - 5 zeZF 
b 

Here u (2, t) is the transverse deflection of the bar, n is the mass of the bar per unit 
length, EI is the bending stiffness, F = con& is the cross-sectional area of the bar 
and z is the distance between a point of the bar transverse section and the neutral axis. 

Considering the bar hinge-supported, we seek the solution of (1.2) which satisfies the 
boundary conditions of the problem as 

u (5, t) = T (t) sin ns / I (1.3) 

where 1 is the bar length, and !I” (t) is a still unknown function of the time. Let us now 

expand the function f (x, f) in a sine series in the argument 5 in the interval (0, 1) 
co 1 

f(r, t)= 2 Fk(t)siny, F,(t) = ; 
1 

k=l 
s 

f {x, t) sin (1.4) 
0 

Substituting (1.3) into (1.2) and taking account of (1.4). we obtain the following equa- 
tion to determine T (t) t 

T..-i-i’(l$ZpcosRt)T::P(t)+(BPSR1(t--)T(~)dl+ (1.5) 

0 

f 1 I . )I 8 
T 

sss 
Rs (t - ~1, t - ~2, t - ~3) T (~1) T (~2) T (~3) dzldr&s 

000 
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o=(n/1)2 f/El/m, p=o 1/i--Po/Pl, p=P1/2(P2-PO) 

P2 = (IC / l)*EI, F (t) = F1 (t) / m, r m= 314 (n / 1)3hIl/ m 

Here P is the natural vibrations frequency of a bar loaded by a constant component 
of the longitudinal force P,, 0) is the natural vibrations frequency of an unloaded bar, 
and p is the excitation factor. 

We assume that the amplitude of the longitudinal periodic force is a quantity of the 

order of a : P (t) = P, i- &PI ~0s et , and moreover, the bar material possesses the pro- 
perty of low viscosity [6], then 

02R, (t) = &II (t), yR (t, t, t) = E G (t, t, t) (1.6) 

where e > 0 is a small parameter. Under the assumptions made,we write (1.5) as 

T”+p2T==F(t)+e 2upZZ’cos0t+ 

[ 

t 

s 
I’(t-r)T(t)dz+ (1.7) 

0 

tt t 
8. 

N 

G (t - ZI, t - ~2, t - ~3) T (~1) T (~2) T (23) dtldzedrs 

obo I 

Let us study (1.7) when F (t) = a sin h t in the case of resonance and non-resonance 
vibrations. 

2, Non-reronance case. Let p # 1. By using the substitution 

T (t) = cl cos pt $ c2 sin pt + d silt At, d = a / ($ - X2) 

we reduce (1.7) to a system of equations in the unknowns cl = c1 (t), ~2 =- c? (t). The 

system obtained is solved by the method of averaging [l-3]. For P i h, 3). 9 h / 3; 
0 _+ 2p, p - h, p -i R, h -- p, the averaged system 

Q’ = - e (a,% + a2e2 + asS1(E12 + F22) $- a4t*g1* + E22)) (2.1) 

E2' = -$@251 - a1E2 + a451 (tl* + E29 - eSE;z (El* + f22)} 

corresponds to the system. 
Here 

nl~=I‘,fd*/a(nl+nz+n,), ae-r,$-d2/2(Bl+Rz+B3) (2.2) 

m 

a. = + (&t-%(:2), U4 m= $ (4 + 2c4), 

. 

rr = 
a 

I‘ (s) sin psds 

0 
CO 
. 

rC = 

s 
r(s)cos psds, Al= (~0s h(s1 - s2) sin p33) 

0 

A2 = (sin psl COS h (S’s - ss)), 
~~ = (~0s (sl - s3)h Sin P32) 

B1 = (COS h (31 - ss) cos Ps2)y 
B2 = (cos h (sl - s2) coS Ps3) 

B, = (cos Psl C,OS h (s2 - s,)), Cl = (COS p (s1 + s, - s,)), 

c2 = (COS p33 cos p (31 - 32)), 
C, = (sin p (sl + S2 - ss)), 

c4 = (~0s p (sl - ~2) Sin Ps3) 

Here and henceforth 
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<f (Sl, sz, sa)> = 
sss 

G (~1, ~2, ~3) f (a, sz, ss) dsldszdsa 

0 0 0 

The solution of the system (2.1) is 

Here aO, ‘pO are arbitrary constants determined from the initial conditions. Therefore, 

on the basis of theorems proved in [l-3], the solution of (1.7) can be approximated for 
sufficiently small E and all t > 0 in the case under consideration to any degree of ac- 

curacy in e by the solution of the system (2.1) 

7’ (1) = 51 (t) cos pt + E,z (t) sin pt + d sin ht = a0 Jfa& (t) x 

exp(--E(l~t,2~)~in((~-~)t-~ln~?(t)I+~O}+d~inht (2*3) 

Since al >O, then it follows from (2.3) that the vibration amplitude will damp out 
exponentially in a first approximation when viscosity is present, while the vibration fre- 

quency and phase will be shifteddepending on the viscoelastic properties of the bar ma- 

terial. As t -+ 00 , the quantity 2’ (t) tends asymptotically to an expression characterizing 
the harmonic oscillations 

T (t) = d sin At (2.4) 

3. R6aonrnce CLlB, The following kinds of resonances can originate in the sys- 

tem (1.7): 
1) p # h, 3h, h / 3, 0 = 2p; 0 * p - h, p + A, h - Pi 

2) p # h, 31, h / 3; e = p - a; 3) p # h, 3h, h I 3; 6 = h + Pi 

4) p # h, 3h, I / 3; 6 = h - p; 5) p = 3h; 8 = 2h; 

6) p = 3h; 6 = 4h; 7) p = 3h; 0 + 2p, p - h, p + h, h - p; 

8) p = li 13; e+ 2p, p - h, p + L ?b - Pi 9) p = 3h; 6 = 6h; 

10) p = h / 3; 6 = 2h I 3; 11) p = h 13; 6 = 4h 13. 

Let us investigate the resonance modes listed. 
In the case (1) the averaged system 

FJ. = -; {a&+ (a2 - ppyE;z + u3el(412+ E22)+aa42(412 + E2V 

52’ = $ ((a2 + pLp2) Cl- al& + a.&(El22 E22) - a3G (W + 422)) 

will correspond to the system (1.7). 

(3.1) 

It is easy to verify that the point E1 = Ea = 0 is the equilibrium position of the sys- 

tern (3.1) which will be asymptotically stable for pap4 < al2 + aza [lo]. Therefore,the 
solution of (1.7) tends asymptotically to the harmonic oscillation (2.4) in the case under 
consideration. 

In GWS (2) - (4) we set the averaged system 

G = -c {aiQ + a&z + a341(41* + En*) + dCz(~z+ Ez*)+ bj} 

G’ = $ (a241 - UlE2 + Cl&(412 + 422)- aaSs(E12$- W)} 

(3.2) 
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in correspondence with the system (1, 7’1, where j is the number of the case (j = 2, 3, 4)‘ 
and ba = b, = pp2d, bs = -pp%, equating the right sides of the system (3.2) to zero, 
we obtain the stationary values of E1 and j& 

&” = A cos cp, !.&’ = A sin ‘p (3.31 

Here A and (p are the roots of the system of algebraic equations. The stationary mode 

(3.3) found is stable if the following inequalities are satisfied [ 11, 121 

ax + 2@ (E; + 421> 0 

ai2 + fG + 4 (aLa8 + azag)(E? + ei’)-f- 3 (c$ + aq2) (FF -j- <zjz > 0 

In this case (I. 7) has the solution T (t) = &” cos pt + Ea” sin it + d sin ht. 
Stability of the stationary resonance modes in cases (5) - (8) is investigated analogous- 

ly. but this question requires further investigation in cases (9) - (11). 

4, Now, let us investigate (1.7) near the principal resonance. Let the natural vibra- 
tions frequency of the bar p be different from the forced vibrations frequency h by a 

quantity proportional to the small parameter e, and moreover, let the amplitude of the 

external force a be small of the order of E, i.e. 

P a = h2 - Eq, a = &A, q, A = con& (4.11 

Equation (1.7) becomes by virtue of (4.1) t 
T”+hzT=~ 2pp”Tms&+qT+Asin?d+ ‘I’(t 

s 
--~)Tt+~+ (4.2) 

0 

I f t . . us G (t -- ri, t - rz, t - aa) T (~1) T (a) T (RI) ~w%drs 
000 1 

Introducing new variables by the formula T (t) = cl cos ht + c2 sin ht, we reduce (4.2) 
to standard form and by averaging the system obtained for 8 =/= 2h,we find 

t& 2: .$ ((a2 f q) ti;t - ait2 + d$ (cl2 + 59) - Uaf$%((E12 -/- &“)j 

where the quilntities ak (k = 1, 2, 3, 4) are evaluated by means of (2.2) if ?, is substi- 
tuted in place of p , The stability of the established solutions of the system (4,3) is in- 

vestigated affalogo~ly to the oases (2) - (4). 
If 8 = 2X, then the behavior of the solution of (4.2) remains open. 

6. Let us study the bar vibrations described by (1.7) near the principal parameteric 

resonance, Setting p2 = (0 / 2)~ - eql, q1 =: const, we reduce (1.7) to the form 
1 

2ppil’~0~0t+gLT+ s r(t-rjT(r)dr+ 
0 

ttt 

G(t--1, t- t2, t - rs) T ($1) T (22) T (a) dzdmh 1 + a sin hi 

Let 8 # 2h. Then using the substitution 
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0 
T (t) = cl cm - t + cs sin 2 + .t + dl sin At, dl=a / [(;)h] 

we reduce (5.1) to standard form and by averaging the system obtained for 6 # W, 6L, 
w / 3, we find 

!$‘I = - $ (a& + (az + q1 - p#) Ez + as41 (41% + 49s) + QG (41s + &*)I (5.2) 

E’t =$ {(at+ q1 +ppyQ - a1E+2+ a&(412+ 422) - M2(412 + c22)) 

where the quantities U,$ (k = 1, 2, 3, 4) are evaluated be means of (2.2) if 6 / 2 is 
substituted in place of p . It is easy to show that the point El = El = 0 is the equilib- 

rium position of the system (5.2) and this position wih be asymptotically stable for 

pap4 < al8 + (% -i- qr)2. In this case the solution of (5.1) therefore tends asymptotically 
to the harmonic oscillation (2.4). 

Stability of the solution of the averaged systems is analyzed analogously in the case 
0=2h/3. 

If 6 = 6h, then the behavior of the solution of (5.1) remains open. 

6. Now let us turn to an examination of the more general equation (1.5). Setting 
F (t) = ea sin It here and taking account of (1.6) we write (5.1) as 

T”+~(i-2pcos~t)T=e I(t-T)T(T)&+ (6. I) 

ttt L 0 

sss c(t - Ia, t - za, t -~a) T(tl)T (~2) T (zs)dz1~ztdzs 

000 1 
For a = 0 Eq. (6.1) degenerates into the known Mathieu equation. 

tion in the form T (Q = ClYl (4 + CnY2 0) 

We seek its solu- 

(6.2) 

where y,(t) and y%(t) are linearly independent particular solutions of the Mathieu equa- 
tion. It is known [ 131 that the general solution of the Mathieu equation depends on the 

magnitude of the characteristic index Y. For imaginary values of v (v = i6, 0 \< p < 
6 / 2) we can set 00 OD 

Yi (r) = 2 Hk ccs (k6 + S) t, y2 (t) = 2 HI, Sin (ke + p) t 

-03 -00 

Substituting (6.2) and (6.3) into (6.1) and averaging the system obtained 
b # li (k is any integer), we find 

41’ = - $ @iG + claE2 + as& (b2 + 4a2)+ a&2(E12 + 42")) 

<2 = ${a2C1 - alE2 + acEi (CP + b2) - M2 (b2 + G2)) 

(6.3) 

for kf3 + 

(6.4) 

00 

la1 = 2 Hk’r,,k, u2 = Hk2rekt Hk4 (elk + 2c2k) 

-00 -00 -cd 
Q) a=+r, ffk” (CSk + 2c4k) 

--oD 

Here Psk, F&, Clk, c.&, C#&, C4k are evaluated by means of (2.2) if k6 + j3 is substi- 
tuted in place of P . According to theorems on averaging, the solution of (6.1) for suf- 
ficiently small a and for all t >, 0 can be approximated by the expression 

T (t) z b (t) ye (t) + 52 (t) YZ (q = uo ~/al/S (t) exP (- em@) X (6.5) 
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m 

2 Hk sin ((k6 + P - au+?) t - ac/2a3 In I 6 (t) I+ 90) 

-ca 

where ae, ‘p. are constants of integration. Since a, > 0, then it follows from (6.5) that 
the solution obtained is damped, i. e. is asymptotically stable. 

Let us assume that k6 f p = 1, holds for fixed values of k , then the averaged system 

&’ = - ${u& + a2C2+ a3Ei(G2 + Ez2) + aa42(Ei2 + Se2) + 4 

c2' = + {U251- a152 + aPc1(f$2 + tZ2,22) - %3<2 (El2 -t b222)) 

will correspond to the system (6.1). 

We note that the general form of this system agrees with the system (3.2) hence its 

investigation will reduce to that elucidated. 
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